Glass Passivated Single-Phase Bridge Rectifier, 10A KBJ1004 Thru KBJ1012

All dimensions in millimeters

FEATURES

- UL recognition file number E320098
- Typical IR less than $2.0 \mu \mathrm{~A}$
- High surge current capability
- Low thermal resistance
- Compliant to RoHS
- Isolation voltage up to 2500 V

7

TYPICAL APPLICATIONS

General purpose use in AC/DC bridge full wave rectification for big power supply, field supply for DC motor, industrial automation applications.

ADVANTAGE

- International standard package

Epoxy meets UL 94 V-O flammability rating

- Small volume, light weight
- Small thermal resistance

PRIMARY CHARACTERRISTICS	
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	10 A
$\mathrm{~V}_{\text {RRM }}$	400 V to 1200 V
$\mathrm{I}_{\mathrm{FSM}}$	210 A
I_{R}	$5 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{F}}$	1.10 V
$\mathrm{~T}_{\text {Jmax. }}$	$150^{\circ} \mathrm{C}$

- High heat-conduction rate
- Low temperature rise
- High temperature soldering guaranteed : $260^{\circ} \mathrm{C} / 10$ second, 2.3 kg tension force
- Weight: 4.0 g (0.14 ozs)

SEMICONDUCTOR

MAJOR RATINGS AND CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	SYMBOL	KBJ10					UNIT
		04	06	08	10	12	
Maximum repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$	400	600	800	1000	1200	V
Peak reverse non-repetitive voltage	$\mathrm{V}_{\text {RSM }}$	500	700	900	1100	1300	V
Maximum DC blocking voltage	$V_{D C}$	400	600	800	1000	1200	V
Maximum average forward rectified output current, $\mathrm{T}_{\mathrm{c}}=85^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	10					A
Peak forward surge current single sine-wave superimposed on rated load	$\mathrm{I}_{\text {FSM }}$	210					A
Rating (non-repetitive, for t greater than 1 ms and less than 8.3 ms) for fusing	$1^{2} \mathrm{t}$	183					$A^{2} \mathrm{~s}$
RMS isolation voltage from case to leads	$\mathrm{V}_{\text {Iso }}$	2500					V
Operating junction storage temperature range	TJ	-40 to 150					${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	-40 to 150					${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$ unless otherwise noted)

PARAMETER	TEST CONDITIONS	SYMBOL	KBJ10					UNIT
			04	06	08	10	12	
Maximum instantaneous forward drop per diode	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}$	V_{F}	1.10					V
Maximum reverse DC current at rated DC blocking voltage per diod	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	I_{R}	5					$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		500					

PARAMETER	TEST CONDITIONS	SYMBOL	KBJ10					UNIT
			04	06	08	10	12	
Typical thermal resistance junction to case	Single-side heat dissipation, sine half wave	$\mathrm{R}_{\text {өJc }}{ }^{(1)}$	5.0					${ }^{\circ} \mathrm{C} / \mathrm{W}$
Mounting torque \quad to heatsink M3 $\pm 10 \%$	A mounting compound is recommended and the torque should be rechecked after a period of 3 hours to allow for the spread of the compound.		0.8					Nm
Approximate weight			4.0					g

Notes

(1) With heatsink, single side heat dissipation, half sine wave.

1

- Product type : "KBJ" Package,1Ø Bridge

2 - $\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$ rating : "10" for 10 A
3 - Voltage code : code $\times 100=V_{\text {RRM }}$

Nell High Power Products

Fig. 1 Derating curve for output rectified current

Fig. 3 Typical reverse characteristics per bridge element

Fig. 2 Maximum non-repetitive peak forward surge current per bridge element

Fig. 4 Typical forward characteristics per bridge element

